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Abstract. The equations obeyed by the density operator in a scattering problem are 
derived. In Liouville space notation, these resemble the Lippmann-Schwinger equations. 
Expressions for the transition rate for one- and two-potential scatterings are also derived. 

1. Introduction 

The conventional approach to scattering theory is in terms of the wavefunction and the 
equation obeyed by it, namely the Lipmann-Schwinger equation. An approach to 
scattering theory in terms of the density operator is interesting in view of the fact that 
the density operator is a more physically meaningful quantity than the wavefunction. It 
is also of interest in problems involving scattering from systems which are in contact 
with a heat bath (Mukamel and Nitzan 1977, Metiu 1978). Although the expression for 
the transition rate has been given in terms of the tetradic T-matrix (Ben-Reuven 1975, 
Ben-Reuven and Mukamel 1975), the equations obeyed by the density operator for a 
scattering problem do not seem to have been derived. It is the purpose of this paper to 
report the equations obeyed by the density operator and to derive the expression for 
transition rate in a very simple fashion. The equations obeyed by the density operator 
are particularly pleasing in that they are very similar to the Lipmann-Schwinger 
equations. We also give expressions for the rate in the case of a two-potential scattering 
problem. Application of the equations to the scattering of atoms from surfaces will 
form the subject of a later publication. 

2. The Fano-Ben-Reuven-Mukamel equations 

A natural framework for the density operator approach to scattering theory is provided 
by the Liouville space approach. We refer the reader to papers by Fano (1963) and 
Ben-Reuven (1975) for details. We shall denote the density operator by W. If we wish 
to stress the fact that W is an element of the Liouville space, we shall enclose it within 
the ket I )). This often has the advantage of making the equations look like those of the 
usual scattering theory. For the purpose of formulating and discussing the equations, 
we make use of the simplest possible case, namely, the scattering of a single particle by a 
potential V. The formalism is the most natural one to use, if the scattering occurs from a 
system which is in a mixed state. 
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We write the Hamiltonian as 

H=Ho+V (1) 
where Ho is the free part of the Hamiltonian. Assuming the system to be in a mixed 
stationary state of Ho, Win, at t = -CO, one can write the exact density operator as 

As Win is stationary with respect to Ho, (i.e. [Ho, W,,] = 0), we obtain 

w + =  lim elHfWlne-'H'. ( 3 )  
I+-m 

The superscript '+' on W indicates that it will satisfy an 'incoming plane wave' 
boundary condition. 

In Liouville space notation, equation (3) becomes 

X is the Liouvillian corresponding to H and is defined by (Ben-Reuven 1975) 

X X  = [H, XI ( 5 )  
for any X belonging to the Liouville space. Interpreting the limit in (4) as 

0 

lim f ( t )  = lim TJ 
t+-m 'I ++0 

e"'f(t) dt, 

we obtain 

(6) 

Let X o  and ŵ  be the Liouvillians corresponding to Ho and V. Then equation (6) could 
be rearranged to give 

IW+))= lWIn))+y(+iO)v/Wln)) (7) 

JW+)>= lWin))+~o(+iO)vlW+)) (8) 

% ( w )  = (w -%)-I 

%()(U) = (0 - XJ1 

or 

where 

and 

(9) 
are tetradic Green functions (Ben-Reuven 1975). Equations (7) and (8) are the 
analogues of the Lipmann-Schwinger equations for the density operator approach. We 
shall call them the Fano-Ben-Reuven-Mukamel (FBM) equations as these are direct 
extensions of the work of these authors. One can also define 1 W-)), which will satisfy the 
outgoing plane wave boundary condition and show that it obeys the equation 

1 w-)) = (-iTJ - W1(-iTJ)I WO,,)> 

in an exactly similar fashion. 
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3. The transition rate 

The rate of transitions into a final state la), which is an eigenfunction of Ho, is given by 

In Liouville space notation 

where 

IQa )) = la >(a I 
and 

1 ~ ' ( t ) ) )  = e-lx'lW+)), 

so 

R, = -i((aa 1x1 W')) = -i((aa /X0+ 2'1 W+)). 

As / a )  is an eigenfunction of HO, the term involving X, is zero and we obtain 

R, = -i((aa 17" W +)). 

Using (7), 

R, = -i((aa /S(+iO)lWin)) 

where 

F ( w )  = v+ V%(w)Y-  

is the tetradic T-matrix. Equation (16) was first given by Ben-Reuven and Mukamel 
(1975), though the manner in which it was arrived at is different. 

4. Two-potential scattering 

Now we consider the expression for transition rates for a case where the scattering is 
caused by two potentials U and V, with the tetradic analogues "II and V. The 
Hamiltonian is 

H = H,+ U + V. (18) 

We assume U to be stronger than V. The rate of transition into la) is 

R, = -i((aa 1 %  +'VI W')). 

Let us define 

lx, )) = laa)) + (-io - Ro)-'% I x ;  )) 

where / X i  )) is a stationary density operator of Ho + U, and satisfies the outgoing plane 
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wave boundary condition. Then 

R, = - i[((X, 1% + Y/w-)) - (((-io - X~)-'%X, 1011 + V I  w'))] 

= -i[((X, 1% +v~w+) ) - ( (x~  I%(iO-Xo)-'(% +V)/W+))] 

= -i[((Xi /VIWT))+((Xa l%IWAl. (21) 

We have made use of the fact that go and % are Hermitian operators. The second term 
in (20) is the exact transition rate into the state la), if only the potential U were present. 
The first term thus gives the change in the rate due to the introduction of the potential 
V. If U is incapable of causing a transition to state la), then 

R, = - i((X, \VI W')). ( 2 2 )  

Finally, it is not immediately obvious that the solution of equations (7) and (8) would 
be identical with that obtained by direct, wavefunction approaches. Thus if 

W," = we la >(a I, 
a 

the usual approach leads to 

w-=E w,Ja*)(a+/ 
a 

where la') obeys 

laf )= Ia)+(Ea +iO-H)-'VIa), 

E, being defined byHola) =Ea la). One can easily prove that a solution of equation (7) 
leads to a result identical with (23). 
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